Fourier Analysis of Modified Nested Factorization Preconditioner for Three-Dimensional Isotropic Problems
نویسندگان
چکیده
For solving large sparse symmetric linear systems, arising from the discretization of elliptic problems, the preferred choice is the preconditioned conjugate gradient method. The convergence rate of this method mainly depends on the condition number of the preconditioner chosen. Using Fourier analysis the condition number estimate of common preconditioning techniques for two dimensional elliptic problem has been studied by Chan and Elman [SIAM Rev., 31 (1989), pp. 20-49]. Nested Factorization(NF) is one of the powerful preconditioners for systems arising from discretization of elliptic or hyperbolic partial differential equations. The observed convergence behavior of NF is better compared to well known ILU(0) or modified ILU. In this paper we introduce Modified Nested Factorization(MNF) which is an improvement over NF. It is proved that condition number of modified NF is O(h−1). An optimal value of the parameter for the model problem is derived. The condition number of modified NF predicts the condition number of NF in limiting sense when the parameter is close to zero. Moreover it is proved that condition number of NF is atleast O(h−1). Numerical results justify Fourier analytic method by exhibiting remarkable similarity in spectrum of periodic and Dirichlet problems. Key-words: Nested Factorization, eigenvalues, eigenvectors, sparse LU, modified sparse LU, circulant matrices ∗ INRIA Saclay Ile de France, Laboratoire de Recherche en Informatique Universite Paris-Sud 11, France (Email:[email protected]) † INRIA Saclay Ile de France, Laboratoire de Recherche en Informatique Universite Paris-Sud 11, France (Email:[email protected]) ‡ School of Mathematical Sciences, Xiamen University, Xiamen, 361005, P.R. China; The work of this author was performed during his visit to INRIA, funded by China Scholarship Council; Email:[email protected] § Laboratoire J. L. Lions, CNRS UMR7598, Universite Paris 6, France; Email: [email protected] in ria -0 04 48 29 1, v er si on 1 18 J an 2 01 0 Analyse de Fourier des preconditioneurs du type factorisation emboite modifie pour les problemes isotropique en 3D Résumé : Pour resondre des grands systemes linéaire d’quation symétrique obtenu de la discrétisation d’une equation aux dérivés partielles elliptique, on choisit le plus souvent la mthode du gradient conjugué prconditionné. La convergence de cette method depend le plus souvent du conditionnement du systeme ainsi preconditionné. L’analyse de Fourier est une technique utilisée par Chan et Elman pour estimer le conditionnement de ce system préconditionné pour les problémes 2D. La factorisation emboitée est un preconditionneur puissant pour les systémes d’equation obtenu de la discretisation d’une EDP elliptique ou hyperbolique. Les observations de la convergence de la factorisation emboite montrent qu’il se comporte mieux que ILU(0) ou ILU modifié. Dans ce papier on introduit la factorisation emboitée qui est une amlioration de la factorisation emboite. Il est prouv que le conditionnement de la factorisation emboite est de O(h−1) Les valeurs optimales des paramétres est obtenues. Le conditionnement de la factorisation emboitée modifie permet de prédire celui de la factorisation emboitée lorsque les paramétres sont prés de zéro. De plus nous prouvons que le conditionnement du NF est au moins de O(h−1). Les résultats numérique justifie les resultats de l’analyse de Fourier en exhibant avec des conditions remarquable sur des problems avec des conditions aux limites de Dirichlet et les conditions aux limites périodiques. Mots-clés : factorization emboitée, valeurs propres, vecteurs propres, LU creux, LU creux modifie, matrice circulaire in ria -0 04 48 29 1, v er si on 1 18 J an 2 01 0 Fourier Analysis of MNF 3
منابع مشابه
Multi-threaded Nested Filtering Factorization Preconditioner
The scalability and robustness of a class of non-overlapping domain decomposition preconditioners using 2-way nested dissection reordering is studied. In particular, three methods are considered: a nested symmetric successive over-relaxation (NSSOR), a nested version of modified ILU with rowsum constraint (NMILUR), and nested filtering factorization (NFF). The NMILUR preconditioner is exact wit...
متن کاملComplete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process
In this paper, we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process. This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process. There is a parameter $alpha$ to control the complete pivoting process. We have studied the effect of dif...
متن کاملNumerical Studies of a Class of Composite Preconditioners
In this paper, we study a composite preconditioner that combines the modified tangential frequency filtering decomposition with the ILU(0) factorization. Spectral property of the composite preconditioner is examined by the approach of Fourier analysis. We illustrate that condition number of the preconditioned matrix by the composite preconditioner is asymptotically bounded by O(h − 2 3 p ) on a...
متن کاملParameter estimates for the Relaxed Dimensional Factorization preconditioner and application to hemodynamics
We present new results on the Relaxed Dimensional Factorization (RDF) preconditioner for solving saddle point problems from incompressible flow simulations, first introduced in [1]. This method contains a parameter α > 0, to be chosen by the user. Previous works provided an estimate of α in the 2D case using Local Fourier Analysis. Novel algebraic estimation techniques for finding a suitable va...
متن کاملThree-dimensional Free Vibration Analysis of a Transversely Isotropic Thermoelastic Diffusive Cylindrical Panel
The present paper is aimed to study an exact analysis of the free vibrations of a simply supported, homogeneous, transversely isotropic, cylindrical panel based on three-dimensional generalized theories of thermoelastic diffusion. After applying the displacement potential functions in the basic governing equations of generalized thermoelastic diffusion, it is noticed that a purely transverse mo...
متن کامل